Skip to main content

SETI - A new proposal to search for extraterrestrial intelligence.

Why don't we see any aliens?

A significant problem is the vastness of space. Despite piggybacking on the world's most sensitive radio telescope, Charles Stuart Bowyer said, the instrument could not detect random radio noise emanating from a civilization like ours, which has been leaking radio and TV signals for less than 100 years. For SERENDIP [A3] and most other SETI projects to detect a signal from an extraterrestrial civilization, the civilization would have to be beaming a powerful signal directly at us. It also means that Earth civilization would only be detectable within a distance of 100 light-years.[89]
"With available instruments we are unlikely to detect Earthlike planets or civilizations," Airieau said. "This sort of detection will not come within our realm for another few decades." c. 1998.

The only thing that overcomes the vastness of space is the vastness of time.  The best way to detect alien civilizations is to send something to where they are, to get closer to the signals, then they'll be easy to detect. This is what we have been doing and will continue to do as long as we can.  We've been sending robots out to our solar system and beyond.  Let's assume this continues for millions of years. What would be the state of the galaxy after those millions of years?

There would be a robot in every star system.

Image result for curiosity rover pictures
We build killer robots, won't everyone else?
What does this imply? This implies that there is an alien robot (actually many alien robots) in our solar system. There are certain fundamental limits on how these robots can communicate. We can make some general observations of how these robots and their communications systems would be designed.

First, we can assume that they will use the most power efficient transmission systems possible. There's only a certain amount of energy in the universe, so the aliens would like to use it as efficiently as possible.  We then know how they would choose to send electromagnetic signals by some calculations that  Professor Emeritus David Messerschmitt has made in [1].  This paper assume s that the only signals that go between star systems are electromagnetic.  In our case we can relax that assumption and assume that the signal receiving civilization actually designed the signal sending apparatus (the robot) and thus has control over both ends of the system.  Professor Messerschmitt looks at the consequences of this in a newer paper [2].  He doesn't quite get all the way to robot to robot communication (or as he likes to call it, starship to starship communication) but, we can use the formulation in the paper to make that estimate.

Second, we can assume that they will try to have their robots remain undetected, as if they were detected there's a good chance they could be subverted or destroyed.  This means they are going to be fairly small, but not too small as they have to have enough power to actually get there and stop.  Let's assume that they would make themselves small so they'd be harder to detect. What are the limits on size detection? Right now we can detect 90% of the asteroids that are one kilometer in diameter, but soon. with advanced signal processing techniques, we'll be able to detect asteroids that are 45 meters in diameter. So let's assume these robots could be 10 times smaller than this (why we haven't seen them.) This would limit the robots to about 5 meters in size.  With this limit we can calculate the power that these robots would transmit per bit.

Since we are assuming that the robots will be talking to each other and there's one at every star, then the average distance they will be sending data is about 5-10 light years. The two antenna will be about 3 meters in diameter.  The transmitted power per bit will be 46 watt-hours per bit.  (See [3] Table III in [2], the only difference is the receive antenna will be 100 times smaller than one on a planet.) This then sets the limits on what we need to use to detect to find these robots.

We can use these limits to propose a new Search for Extra-Terrestrial Intelligence.  I like to call this the Search for Alien Killer Robots (SAKR.) These assumptions point to several new methods of conducting SETI.  We can look towards all the closest stars to try and pull out these minimal energy signals from the light of the star. Another idea to detect these robots is to send our own robots out towards the nearest stars then look back towards the solar system.  The signals will be much larger since we are much closer to the transmitting robots. And if any robots are found, we can then go get them.

One proposal would be to send some wide band receivers toward each of the stars and have them listen in the direction of the star as well as in the direction of the solar system. I believe that if we sent enough of these detectors we could also have the largest synthetic aperture radio telescope in (or out) of the solar system. This array of detectors could be used to look at many other possible signals as well as being used as a transmitter to talk to those potential starships we'll be sending out.

In future posts I will go over the costs of running these new SETI searches, how to optimally design the detection systems [4], and what else we could do with such a system if we build it.

Thanks for reading,
 -Dr. Mike


[1] Optimum end-to-end interstellar communication design for power efficiency, David Messerschmitt, UC Berkely, published in astro-ph.IM on 28th July 20132. arXiv:1305.4684v2

[2] Design for minimum energy in starship and interstellar communications, David Messerschmitt, published in astro-ph.IM on 29th March 2014. arXiv:1402.1215v2

[3]
TABLE III
EXAMPLES OF ENERGY REQUIREMENTS AT THE FUNDAMENTAL LIMIT


Parameter
Starship
Civilization
Units
Tx antenna diameter
3
300
meters
Rec antenna diameter
300
300
meters
Distance
10
1000
Light years
Received energy per bit
8
8
photons
Transmitted energy per bit
0.46
0.46
Watt-hours


[4] Insterllar Communication: The Case for Spread Spectrum, David G. Messerschmitt, UC Berkeley, arXiv:1111.0547v2 [asro-ph.IM] 2 Dec 2011.





















Comments

Popular posts from this blog

The Declaration of Independence is the foundation of modern ethics

The Settlement of the War between Science and Religion.
Why the Declaration of Independence and the Bill of Rights are More Important than you realize.
These two documents provide the foundation of the Grand Moral Compromise between Religion and Science that allowed the Industrial Revolution to progress by defining the morals and ethics of governments and their relationship with the people. The only moral and ethical form of government is declared to be a Lawful Democracy with Religious Freedom. These two documents define why this is from first postulates and dictate the method to form a government.

The Grand Moral Compromise was defined in the Declaration of Independence and codified in the Bill of Rights: it is the agreement that abolished the crime of heresy in return for freedom of all religions, including science, the harbinger of truth.
Only about half [G] of the world has agreed to this Grand Moral Compromise, the rest are still at war with themselves: religion against religion, a…

A modest proposal to end the Flat Earth Society and put Silicon Valley on the map.

Flat Wrong the end piece in Scientific American, in the latest issue (May 2020) got me to thinking about how we could just end this idiocy that leads to many, many people being driven into believing obviously fallacious conspiracy theories.

Did we actually go to the moon? (hint: we did.) Was Obama born in Hawaii? (hint: yes.) Is he Muslim? (hint: no.) Is QAnon saying anything that's true? (hint: no.) Are the Jews trying to take over the world (hint: no.)Are aliens here? (hint: no.)Do humans cause Global Warming? (hint: yes.)Have the Clintons murdered tens of people? (hint: no.)Did the Russians help the Trump campaign? (hint: yes.)Yada, yada, yada. We can't actually have much proof against most of these fallacies, but the Flat Earth one, we can if we actually get high enough in the atmosphere to see the curvature of the Earth. You will convince some Flat Earthers they are wrong. Most will just come up with some other excuse and continue to try and justify the fun fact that they …

Republicans vs. Democrats. It's not conservatives vs. liberals, it's authoritarians vs. progressives.

It's Authoritarians (Royalty lovers - L'estate, c'est moi) vs. Progressives (All men are created equal)

Republicans are more Authoritarian than Conservative. Conservatives want to pick an imaginary time in the past and declare it to be perfect. Authoritarians have a Father figure complex. Whatever the Father says is right. Anything else is immoral. [1]  So even though there is a streak of Conservatism in the Republican party, it's not really the basis of their morality. Their morality is handed to them by their Father, whatever he says is moral. To disagree with him is immoral. Pretty simple, easy for people who are too tired to think for themselves.

In contrast, the moral authority of Democrats comes from their Progressive, American ideals.

Progressives believe in the

Declaration of Independence:Life Liberty and the Pursuit of HappinessAll men are created equalThe people agree on how they will be governedNo Royal authority is acceptedNo one is above the lawThe Gettysbu…